Cómo clasificar llanto del recién nacido mediante una red neuronal supervisada

El llanto es una vía de comunicación del recién nacido con el medio circundante. Investigaciones acerca del llanto infantil han correlacionado características acústicas de éste con patologías, demostrándose que el llanto puede reflejar la integridad neurofisiológica del niño y dar una medida de su interacción con el ambiente y su desarrollo cognitivo y social. Esta contribución muestra cómo clasificar el llanto de neonatos con hipoxia y de un grupo de control, en normal o patológico, a través de una red neuronal artificial supervisada. Para implementar la red neuronal se aprovechan las posibilidades de la plataforma MATLAB®. El diseño y estructuración de la red considera algoritmo de aprendizaje o entrenamiento, iteraciones, pruebas e intervalos de clasificación, obteniéndose arquitectura y topología, y funcionalidades de la red neuronal que en la generalización proporciona la mejor clasificación. En el trabajo se aplica el método de selección de casos, el método acústico para extraer parámetros cuantitativos de la señal de llanto en tiempo, intensidad y frecuencia, así como métodos vinculados con el diseño, implementación y validación, con pruebas diagnósticas, de la red neuronal artificial obtenida para cumplir el objetivo del trabajo que es la generación de clases (clasificación del llanto). Con precisión del resultado de clasificación del 90 % se está en condición de concebir una solución informática (agregando interfaz para interactuar con base de datos) para ayudar complementariamente al diagnóstico médico no invasivo usando el llanto del neonato provocado ante dolor.

Palabras clave: análisis del llanto infantil; clasificación del llanto; red neuronal artificial; red neuronal supervisada; backpropagation.

Abstract

Cry from newborn (0-28 days) is a way of communication for the interaction with surrounding world. Infant cry researches provide information that correlate among cries acoustic features with pathologies. It has been demonstrated that the infant cry is able to reflect child neurophysiology integrity and give meaning from newborn interaction with environment, also cognitive and social development from child. This contribution shows how to classify the cry of neonates with hypoxia and of a control group, into normal or pathological, through a supervised artificial neural network. Network implementation makes use of MATLAB® platform possibilities. Design and structuring of network take into consideration aspects as training algorithm, iterations, tests and classification intervals. All these referred aspects give as result an architectural, topology and functionalities from neural network able to classify cry in generalization stage offering good outcome. Different methods are applied in this paper as selection of cases, acoustic methods in order to obtain quantitative parameters from cry signals (in time, intensity and frequency domain). Methods related with design, implementation and validation (diagnostic test) of an artificial neural network able to carry out the goal of this paper (classification of cry) are used. With accuracy results in cry classification about 90 %, authors get ready conditions for an informatic solution (with addition of interface for data base interaction) for help as a non-invasive complement to medical diagnosis using cry from neonate induced by pain.

Keywords: infant cry analysis; cry classification; artificial neural network; supervised neural network; backpropagation.

 

Daniel Isac Escobedo Beceiro, Guillermo Javier Benitez Labori, Sergio Daniel Cano Ortiz, Leonardo Capdevila Bravo, Guillermo Modesto Delgado Guerra
 PDF
 
Elementos 1 - 1 de 1

Consejos de búsqueda:

  • Los términos de búsqueda no distinguen entre mayúsculas y minúsculas
  • Las palabras comunes serán ignoradas
  • Por defecto, sólo aquellos artículos que contengantodos los términos en consulta, serán devueltos (p. ej.: Y está implícito)
  • Combine múltiples palabras conO para encontrar artículos que contengan cualquier término; p. ej., educación O investigación
  • Utilice paréntesis para crear consultas más complejas; p. ej., archivo ((revista O conferencia) NO tesis)
  • Busque frases exactas introduciendo comillas; p.ej, "publicaciones de acceso abierto"
  • Excluya una palabra poniendo como prefijo - o NO; p. ej. -política en línea o NO política en línea
  • Utilice * en un término como comodín para que cualquier secuencia de caracteres concuerde; p. ej., soci* moralidad hará que aparezcan aquellos documentos que contienen "sociológico" o "social"